Nguyên lý Lý_thuyết_trường_lượng_tử

Để cho đơn giản, đơn vị tự nhiên được dùng trong các phần sau đã đơn giản hóa hằng số Plank và vận tốc ánh sáng : ħ=c=1.

Trường cổ điển

Một trường cổ điển là một hàm số của tọa độ không thời gian có sẵn. Ví dụ như trường hấp dẫn Newton g(x, t) hay điện trường E(x, t). Một trường cổ điển có thể hiểu như là một đại lượng có mặt tại mọi điểm trong không gian . Do đó, nó có vô hạn bậc tự do.

Rất nhiều hiện tượng có những tính chất lượng tử mà không thể giải thích bởi lý thuyết trường cổ điển. Ví dụ như hiệu ứng quang điện có thể được giải thích hiệu quả nhất bằng các hạt rời rạc hơn là một trường liên tục. Kết quả của lý thuyết trường lượng tử là mô tả nhiều hiện trượng bằng cách sử dụng một mô hình biến điệu của trường.

Định lượng chính tắc và tích phân từng phần là 2 phương pháp phổ biến của QFT. Để trình bày QFT một cách cơ bản, ta cần phải nhìn một cách khái quát hóa.

Trường cổ điển cơ bản nhất là trường vô hướng - một số thực có mặt tại mọi điểm trong không gian và thay đổi theo thời gian. Được kí hiệu bởi ϕ(x, t), trong đó x là vector tọa độ, t là thời gian. Giả sử hàm Lagrangian của trường là:

L = ∫ d 3 x L = ∫ d 3 x [ 1 2 ϕ ˙ 2 − 1 2 ( ∇ ϕ ) 2 − 1 2 m 2 ϕ 2 ] , {\displaystyle {\displaystyle L=\int d^{3}x\,{\mathcal {L}}=\int d^{3}x\,\left[{\frac {1}{2}}{\dot {\phi }}^{2}-{\frac {1}{2}}(\nabla \phi )^{2}-{\frac {1}{2}}m^{2}\phi ^{2}\right],}}

trong đó ϕ ˙ {\displaystyle {\displaystyle {\dot {\phi }}}} là đạo hàm theo thời gian của trường, ∇ là toán tử gradient, và m là tham số thực (khối lượng của trường). Áp dụng phương trình Euler-Lagrange cho Lagrangrian.

∂ ∂ t [ ∂ L ∂ ( ∂ ϕ / ∂ t ) ] + ∑ i = 1 3 ∂ ∂ x i [ ∂ L ∂ ( ∂ ϕ / ∂ x i ) ] − ∂ L ∂ ϕ = 0 , {\displaystyle {\displaystyle {\frac {\partial }{\partial t}}\left[{\frac {\partial {\mathcal {L}}}{\partial (\partial \phi /\partial t)}}\right]+\sum _{i=1}^{3}{\frac {\partial }{\partial x^{i}}}\left[{\frac {\partial {\mathcal {L}}}{\partial (\partial \phi /\partial x^{i})}}\right]-{\frac {\partial {\mathcal {L}}}{\partial \phi }}=0,}}

ta thu được phương trình chuyển động của trường, mô tả giá trị của nó theo không gian và thời gian:

( ∂ 2 ∂ t 2 − ∇ 2 + m 2 ) ϕ = 0. {\displaystyle {\displaystyle \left({\frac {\partial ^{2}}{\partial t^{2}}}-\nabla ^{2}+m^{2}\right)\phi =0.}}

Hay còn được biết đến như là phương trình Klein-Gordon.

Klein-Gordon là một phương trình sóng, do đó nghiệm của nó có thể viết dưới dạng tổng của các mode (thu được thông qua biến đổi Fourier) như sau:

ϕ ( x , t ) = ∫ d 3 p ( 2 π ) 3 1 2 ω p ( a p e − i ω p t + i p ⋅ x + a p ∗ e i ω p t − i p ⋅ x ) , {\displaystyle {\displaystyle \phi (\mathbf {x} ,t)=\int {\frac {d^{3}p}{(2\pi )^{3}}}{\frac {1}{\sqrt {2\omega _{\mathbf {p} }}}}\left(a_{\mathbf {p} }e^{-i\omega _{\mathbf {p} }t+i\mathbf {p} \cdot \mathbf {x} }+a_{\mathbf {p} }^{*}e^{i\omega _{\mathbf {p} }t-i\mathbf {p} \cdot \mathbf {x} }\right),}}

trong đó a là một số phức (đã được chuẩn hóa), * kí hiệu cho liên hợp phức, và ωp

là tần số của mode dao động cơ bản:

ω p = | p | 2 + m 2 . {\displaystyle {\displaystyle \omega _{\mathbf {p} }={\sqrt {|\mathbf {p} |^{2}+m^{2}}}.}}

Do đó mỗi mode tương ứng với một p có thể coi như là một dao động điều hòa với tần số ωp.

Lượng tử hóa chính tắc

Quá trình lượng tử hóa cho trường vô hướng cũng tương tự như sự thăng tiến từ dao động tử điều hòa lên thành dao động tử điều hòa lượng tử.

Phương trình dao động điều hòa cổ điển:

x ( t ) = 1 2 ω a e − i ω t + 1 2 ω a ∗ e i ω t , {\displaystyle {\displaystyle x(t)={\frac {1}{\sqrt {2\omega }}}ae^{-i\omega t}+{\frac {1}{\sqrt {2\omega }}}a^{*}e^{i\omega t},}}

trong đó a là số phức (đã được chuẩn hóa theo quy ước), và ω là tần số dao động. Chú ý rằng x thay thế cho hạt trong dao động điều hòa tại vị trí cân bằng, và không nên nhầm lẫn với kí hiệu x của trường.

Đối với dao động điều hòa lượng tử, x(t) được nâng cấp lên thành toán tử tuyến tính x ^ ( t ) {\displaystyle {\displaystyle {\hat {x}}(t)}} :

x ^ ( t ) = 1 2 ω a ^ e − i ω t + 1 2 ω a ^ † e i ω t . {\displaystyle {\displaystyle {\hat {x}}(t)={\frac {1}{\sqrt {2\omega }}}{\hat {a}}e^{-i\omega t}+{\frac {1}{\sqrt {2\omega }}}{\hat {a}}^{\dagger }e^{i\omega t}.}}

Số phức a và a* được thay thế bằng toán tử sinh và hủy hạt a ^ † {\displaystyle {\displaystyle {\hat {a}}^{\dagger }}} và a ^ {\displaystyle {\displaystyle {\hat {a}}}} , trong đó † kí hiệu cho liên hợp Hermitian. Quan hệ giữa chúng là

[ a ^ , a ^ † ] = 1. {\displaystyle {\displaystyle [{\hat {a}},{\hat {a}}^{\dagger }]=1.}}

Trạng thái chân không | 0 ⟩ {\displaystyle {\displaystyle |0\rangle }} - trạng thái có mức năng lượng thấp nhất, được định nghĩa là

a ^ | 0 ⟩ = 0. {\displaystyle {\displaystyle {\hat {a}}|0\rangle =0.}}

Mọi trạng thái lượng tử của một dao động tử điều hòa có thể thu được từ | 0 ⟩ {\displaystyle {\displaystyle |0\rangle }} bằng cách tác dụng một số lần toán tử sinh hạt:

| n ⟩ = ( a ^ † ) n | 0 ⟩ . {\displaystyle {\displaystyle |n\rangle =({\hat {a}}^{\dagger })^{n}|0\rangle .}}

Bằng phương pháp tương tự, một trường số thực ϕ cũng được lượng tử hóa thành toán tử ϕ ^ {\displaystyle {\displaystyle {\hat {\phi }}}} , trong khi đó ap và ap* được thay thế bằng toán tử sinh và hủy a ^ p {\displaystyle {\displaystyle {\hat {a}}_{\mathbf {p} }}} và a ^ p † {\displaystyle {\displaystyle {\hat {a}}_{\mathbf {p} }^{\dagger }}} cho p cụ thể:

ϕ ^ ( x , t ) = ∫ d 3 p ( 2 π ) 3 1 2 ω p ( a ^ p e − i ω p t + i p ⋅ x + a ^ p † e i ω p t − i p ⋅ x ) . {\displaystyle {\displaystyle {\hat {\phi }}(\mathbf {x} ,t)=\int {\frac {d^{3}p}{(2\pi )^{3}}}{\frac {1}{\sqrt {2\omega _{\mathbf {p} }}}}\left({\hat {a}}_{\mathbf {p} }e^{-i\omega _{\mathbf {p} }t+i\mathbf {p} \cdot \mathbf {x} }+{\hat {a}}_{\mathbf {p} }^{\dagger }e^{i\omega _{\mathbf {p} }t-i\mathbf {p} \cdot \mathbf {x} }\right).}}

quan hệ giữa chúng

[ a ^ p , a ^ q † ] = ( 2 π ) 3 δ ( p − q ) , [ a ^ p , a ^ q ] = [ a ^ p † , a ^ q † ] = 0 , {\displaystyle {\displaystyle [{\hat {a}}_{\mathbf {p} },{\hat {a}}_{\mathbf {q} }^{\dagger }]=(2\pi )^{3}\delta (\mathbf {p} -\mathbf {q} ),\quad [{\hat {a}}_{\mathbf {p} },{\hat {a}}_{\mathbf {q} }]=[{\hat {a}}_{\mathbf {p} }^{\dagger },{\hat {a}}_{\mathbf {q} }^{\dagger }]=0,}}

trong đó δ là hàm delta Dirac. Trạng thái chân không | 0 ⟩ {\displaystyle {\displaystyle |0\rangle }} được định nghĩa là

a ^ p | 0 ⟩ = 0 , với mọi  p . {\displaystyle {\displaystyle {\hat {a}}_{\mathbf {p} }|0\rangle =0,\quad {\text{với mọi }}\mathbf {p} .}}

Mọi trạng thái lượng tử của trường có thể thu được từ trạng thái chân không bằng cách tác dụng nhiều lần toán tử sinh:

( a ^ p 3 † ) 3 a ^ p 2 † ( a ^ p 1 † ) 2 | 0 ⟩ . {\displaystyle {\displaystyle ({\hat {a}}_{\mathbf {p} _{3}}^{\dagger })^{3}{\hat {a}}_{\mathbf {p} _{2}}^{\dagger }({\hat {a}}_{\mathbf {p} _{1}}^{\dagger })^{2}|0\rangle .}}

Mặc dù khái niệm trường xuất hiện trong Lagrangian một cách tuyến tính, trạng thái lượng tử của trường là rời rạc. Trong khi không gian trạng thái của dao động tử điều hòa lượng tử bao gồm tất cả các mức năng lượng rời rạc của hạt dao động thì không gian trạng thái của trường lượng tử bao gồm các mức năng lượng rời rạc của một số lượng hạt tùy ý. Sau này không gian đó được biết tới như là không gian Fock, nó được dùng để giải thích việc số lượng hạt trong hệ lượng tử tương đối tính là không cố định. Quá trình lượng tử hóa số hạt bất kì thay vì một hạt thường được gọi là sự lượng tử hóa lần thứ 2.

Quá trình trên là ứng dụng trực tiếp của cơ học lượng tử và có thể dùng để lượng tử hóa trường vô hướng, trường Dirac, trường vector và thậm chí là trong lý thuyết dây. Dù vậy, toán tử sinh và hủy cũng chỉ được định nghĩa hoàn chỉnh trong lý thuyết đơn giản nhất mà không có sự tương tác. Trong trường hợp trường vô hướng thực, sự tồn tại của các toán tử này là kết quả của việc phân tích nghiệm của trường cổ điển ra tổng của các mode dao động. Để tính toán đối với các tương tác có kể tới hấp dẫn, ta cần đến lý thuyết nhiễu loạn.

Hàm Lagrangian của mọi trường lượng tử trong thực tế luôn bao gồm các số hạng tương tác cộng với số hạng của trường tự do.

Tích phân đường

Công thức tích phân đường trong QFT quan hệ với tính toán trực tiếp của biên độ phân ra của một quá trình tương tác cụ thể, hơn là các toán tử là không gian trạng thái. Để tính toán biên độ xác suất của một hệ sinh ra từ trạng thái ban đầu | ϕ I ⟩ {\displaystyle {\displaystyle |\phi _{I}\rangle }} tại t=0 đến trạng thái cuối | ϕ F ⟩ {\displaystyle {\displaystyle |\phi _{F}\rangle }} tại t=T, tổng thời gian chia một khoảng N nhỏ. Biên độ cuối cùng là tổng hợp của biên độ với mỗi khoảng, tích phân qua tất cả các trạng thái trung gian. Đặt H là Hamiltonian, ta có

⟨ ϕ F | e − i H T | ϕ I ⟩ = ∫ d ϕ 1 ∫ d ϕ 2 ⋯ ∫ d ϕ N − 1 ⟨ ϕ F | e − i H T / N | ϕ N − 1 ⟩ ⋯ ⟨ ϕ 2 | e − i H T / N | ϕ 1 ⟩ ⟨ ϕ 1 | e − i H T / N | ϕ I ⟩ . {\displaystyle {\displaystyle \langle \phi _{F}|e^{-iHT}|\phi _{I}\rangle =\int d\phi _{1}\int d\phi _{2}\cdots \int d\phi _{N-1}\,\langle \phi _{F}|e^{-iHT/N}|\phi _{N-1}\rangle \cdots \langle \phi _{2}|e^{-iHT/N}|\phi _{1}\rangle \langle \phi _{1}|e^{-iHT/N}|\phi _{I}\rangle .}}

Lấy giới hạn N → ∞, tích trên của các tích phân trở thành tích phân đường Feynman.

⟨ ϕ F | e − i H T | ϕ I ⟩ = ∫ D ϕ ( t ) exp ⁡ { i ∫ 0 T d t L } , {\displaystyle {\displaystyle \langle \phi _{F}|e^{-iHT}|\phi _{I}\rangle =\int {\mathcal {D}}\phi (t)\,\exp \left\{i\int _{0}^{T}dt\,L\right\},}}

trong đó L là hàm Lagrangian liên quan tới ϕ và đạo hàm của nó theo trục toạ độ không thời gian, ta thu được từ Hamiltonian H thông qua biến đổi Legendre. Điều kiện đầu và cuối của tích phân đường tương ứng

ϕ ( 0 ) = ϕ I , ϕ ( T ) = ϕ F . {\displaystyle {\displaystyle \phi (0)=\phi _{I},\quad \phi (T)=\phi _{F}.}}

Nói cách khác, biên độ cuối cùng là tổng biên độ của các đường khả dĩ giữa trạng thái đâu và cuối, trong đó biên độ của một đường là đường cho trước bởi hàm e mũ trong tích phân

Giản đồ Freynman

Hàm tương ứng trong thuyết tương tác có thể viết dưới dạng chuỗi nhiễu loạn. Mỗi số hạng là một chuỗi tích Freynman trong lý thuyết tự do và có thể đại diện trục quan bằng giản đồ Freynman.